skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mercader, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a novel configuration for generating acoustic microstreaming flows at audible frequencies within a microchannel utilizing a pinned oscillating membrane. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026
  2. Piezoelectric acoustic energy harvesting within the human body has traditionally faced challenges due to insufficient energy levels for biomedical applications. Existing acoustic resonators are often much larger in size, making them impractical for microscale applications. This study investigates the use of acoustically oscillated microbubbles as energy-harvesting resonators. A comparative study was conducted to determine the energy harvested by a freestanding diaphragm and a diaphragm coupled with an oscillating microbubble. The experimental results demonstrated that incorporating a microbubble enabled the flexible piezoelectric diaphragm to harvest seven times more energy than the freestanding diaphragm. These findings were further validated using Laser Doppler Vibrometer (LDV) measurements and stress calculations. Additional experiments with a phantom tissue tank confirmed the feasibility of this technology for biomedical applications. The results indicate that acoustically resonating microbubbles are a promising design for microscale acoustic energy-harvesting resonators in implantable biomedical devices. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026